Social behavior, part 2

The termite queen in her egg chamber

Types of social interactions

Change in recipient fitness

Change in actor fitness

Mutualism

- Inter- or intra-specific interaction in which both interactors benefit immediately
 - Examples
 - Seed dispersal/Pollination
 - Foraging/Grooming
 - Protection

Types of social interactions

Explanation is either: 1) reciprocal altruism or 2) kin selection

- Cotton-top tamarins
 - Positioning food to help a companion grab it
 - Occurred much more often when focal tamarin was matched with a tamarin (unrelated) who helped in the past

Game theory

- General question: what is optimal behavior in a situation where there isn't a single "best" thing to do
 - Depends on what others do (or are *likely* to do)
- John Nash
 - Nobel prize (Economics) for contributions to game theory
 - "Nash equilibrium"
 - Stable equilibrium allowing two strategies in a game to coexist
- Game theory uses models to predict phenomena, and can determine which variables underly the decision rules
 - Makes predictions about which social behaviors will be stable over evolutionary time (ESS = evolutionarily stable strategies)
 - » ESS = a set of behaviors that is resistant to "invasion" by any mutant alternatives *if everyone's already doing the current ESS*

Using game theory to model cooperation

- Using game theory to model cooperation
 - Simple prisoner's dilemma computes that reciprocal altruism shouldn't evolve
 - Always better to defect (i.e., cheaters are favored; reciprocity not an ESS)

9

- Using game theory to model cooperation
 - Simple prisoner's dilemma computes that reciprocal altruism shouldn't evolve
 - Always better to defect (i.e., cheaters are favored; reciprocity not an ESS)

energy and risk of sharing

drops food value by 0.4

(0.500) Singler Associates, inc

How to model reciprocity

- "tit-for-tat" can be an ESS:
 - Rule: always start as cooperator, and then do what other did
 - Rewards from back and forth cooperation ADD UP, exceeding shortterm payoff from a single defection
 - » ESS when there are <u>multiple interactions with</u> <u>same individuals AND</u> <u>individual recognition</u>

energy and risk of sharing

(\$ 500) Single Apportuge, inc

- Allo-feeding in vampire bats: unrelated females share blood meals with unsuccessful foragers
 - Reciprocity can evolve because:
 - -1) Many chances for repeated interaction
 - 2) Individual recognition, so can punish cheaters (withhold blood)
 - 3) Cost to donor low (little blood given), but VERY beneficial to the starving receiver (can survive until can suck blood tomorrow)

https://ncase.me/trust/

Types of social interactions

Change in recipient fitness

Either reciprocal altruism or kin selection

Inclusive fitness

- Fitness refers to number of surviving offspring and other descendant relatives (grandchildren, etc.)
 - Each offspring contains only half of parent's genes
 - Siblings also share half their genes, because they had the same parents. These genes are identical by descent (IBD)

Inclusive fitness

- Fitness refers to number of surviving offspring and other descendant relatives (grandchildren, etc.)
 - Each offspring contains only half of parent's genes
 - Siblings also share half their genes, because they had the same parents. These genes are identical by descent (IBD)
- What really matters is inclusive fitness
 - Direct fitness = via reproduction (own kids)
 - Indirect fitness = via non-descendant relatives
 - Direct + Indirect = **Inclusive Fitness**
 - Doing something that causes others to produce non-descendant relatives is (genetically) just like reproducing: helping mom & dad to make an "extra" sibling is like having a kid of your own

Calculating relatedness

- It's not just about siblings and offspring...
 - All relatives that share common ancestor(s) have copies of genes that are Identical by Descent (IBD)
 - Can calculate relatedness (r) for any category of relative
 - Probability that a particular gene is IBD in both individuals or, proportion of IBD genes shared between 2 individuals

Calculating relatedness

- It's not just about siblings and offspring...
 - All relatives that share common ancestor(s) have copies of genes that are Identical by Descent (IBD)
 - Can calculate relatedness (r) for any category of relative
 - Probability that a particular gene is IBD in both individuals or, proportion of IBD genes shared between 2 individuals

Florida scrub jay example

- Only 1 nest (and 1 breeding pair) in group
 - Non-breeding helpers feed young, fight off predators, defend territory
 - Why do helpers stay and forego their own reproduction?
 - No place to go: all good habitat filled, so have to wait
 - Next best thing to own reproduction: help raise 'extra' kin

Effects of helpers on fitness

- Helpers really do help in raising more siblings
 - when removed helpers: do not produce as many young

Hamilton's Rule

- Hamilton's Rule (i.e., how kin selection works)
 - Genes influencing behavior increase if ...

rB-C > 0 or: rB > C

- B = benefit to the recipient
- C = cost to the altruist
- r = coefficient of relatedness

Kinship calculations

- (r) relatedness:
 - Probability that alleles in one individual are shared, due to common ancestry, in another individual
- According to Hamilton's Rule, would you lay down your life for one sister?
 - Remember it will be favored if rB-C>0

Kinship calculations

- (r) relatedness:
 - Probability that alleles in one individual are shared, due to common ancestry, in another individual
- According to Hamilton's Rule, would you lay down your life for one sister?
 - Remember it will be favored if rB-C>0
 - Answer is 'No': B=1, C=1 and r=0.5
 - 0.5(1)-1 > 0 (not true)
 - requires B=3 (three sisters) for fitness to be greater than zero.
 - or once altruism evolves in species, altruism alleles can be maintained if B=2 (fitness equivalent)

Hamilton's Rule problem

- Which behavior would be more highly favored?
 - Direct help to mother + father and enable them to rear 1 offspring that they would not have otherwise produced
 - Direct help to aunt + uncle and enable them to rear 5 offspring they would not have otherwise produced

Hamilton's Rule problem

- Which behavior would be more highly favored?
 - Direct help to mother + father and enable them to rear 1 offspring that they would not have otherwise produced
 - Direct help to aunt + uncle and enable them to rear 5 offspring they would not have otherwise produced

mother + father option

r between actor and offspring = 0.5 (full sibling)

 $0.5 \times 1 \text{ offspring} = 0.5$

Hamilton's Rule problem

- Which behavior would be more highly favored?
 - Direct help to mother + father and enable them to rear 1 offspring that they would not have otherwise produced
 - Direct help to aunt + uncle and enable them to rear 5 offspring they would not have otherwise produced

mother + father option

r between actor and offspring = 0.5 (full sibling)

 $0.5 \times 1 \text{ offspring} = 0.5$

aunt + uncle option

r between actor and offspring = 0.125 (cousins)

0.125 x 5 offspring = 0.625

Increase indirect fitness more if help aunt+uncle

Testing the kin selection hypothesis

- Prediction 1:
 - Individuals should be more likely to help kin than non-kin
 - Pied Kingfishers help breeding pair more often when related

TABLE 13.3 Calculations of inclusive fitness for male pied kingfishers								
	First year			Second year				
Behavioral tactic	y	r	f_1	0	r	5	m	f ₂
Primary helper	1.8×	0.32	= 0.58	2.5 ×	0.50>	< 0.54	× 0.60 -	- 0.41
Secondary helper	1.3 >	0.00	= 0.00	2.5 ×	0.50>	× 0.74	× 0.91	= 0.84
Delayer	0.0 ×	0.00	= 0.00	2.5 ×	0.50>	× 0.70	× 0.33 -	= 0.29

Source: Reyer [1013]

Symbols: y = estra young produced by helped parents; v = offspring produced by breeding exhelpers and delayers; <math>r = coefficient of relatedness between the male and <math>y, and between the male and o; $f_1 = fitness$ in first year (indirect fitness for the primary helper); $f_2 = direct$ fitness in second year; s = probability of surviving into the second year; m = probability of finding a mate in the second year.

Testing the kin selection hypothesis

- Prediction 1:
 - Individuals should be more likely to help kin than non-kin
 - Belding's ground squirrels call more often with kin nearby

Testing the kin selection hypothesis

- Prediction 2:
 - Individuals should help (quantitatively) close relatives more than distant relatives
 - White-fronted bee-eaters helping, and Lion Nursing

